Time-Resolved Fluorescence Spectroscopy Reveals Fine Structure and Dynamics of Poly(l-lysine) and Polyethylenimine Based DNA Polyplexes.

نویسندگان

  • Ekaterina S Lisitsyna
  • Tiia-Maaria Ketola
  • Emmanuelle Morin-Picardat
  • Huamin Liang
  • Martina Hanzlíková
  • Arto Urtti
  • Marjo Yliperttula
  • Elina Vuorimaa-Laukkanen
چکیده

Structural dynamics of the polyethylenimine-DNA and poly(l-lysine)-DNA complexes (polyplexes) was studied by steady-state and time-resolved fluorescence spectroscopy using the fluorescence resonance energy transfer (FRET) technique. During the formation of the DNA polyplexes, the negative phosphate groups (P) of DNA are bound by the positive amine groups (N) of the polymer. At N/P ratio 2, nearly all of the DNA's P groups are bound by the polymer N groups: these complexes form the core of the polyplexes. The excess polymer, added to this system to increase the N/P ratio to the values giving efficient gene delivery, forms a positively charged shell around the core polyplex. We investigated whether the exchange between the core and shell regions of PEI and PLL polyplexes takes place. Our results demonstrated a clear difference between the two studied polymers. Shell PEI can replace PEIs previously attached to DNA in the polyplex core, while PLL cannot. Such a dynamic structure of PEI polyplexes compared to a more static one found for PLL polyplexes partially explains the observed difference in the DNA transfection efficiency of these polyplexes. Moreover, the time-resolved fluorescence spectroscopy revealed additional details on the structure of PLL polyplexes: in between the core and shell, there is an intermediate layer where both core and shell PLLs or their parts overlap.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Polyethylenimine: Self Assemble Nanoparticle Forming Polymer for pDNA Delivery

Objective Polyethylenimine (PEI), a readily available synthetic polycation which has high transfection efficiency owing to its buffering capacity was introduced for transfection a few years ago. But it has been reported that PEI is cytotoxic in many cell lines. In this study, in order to enhance the transfection efficiency of 10 kDa PEI and reduce its toxicity, hydrophobic residues were grafte...

متن کامل

Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells.

Synthetic vectors were evaluated for their ability to mediate efficient mRNA transfection. Initial results indicated that lipoplexes, but not polyplexes based on polyethylenimine (PEI, 25 and 22 kDa), poly(L-lysine) (PLL, 54 kDa) or dendrimers, mediated efficient translation of mRNA in B16-F10 cells. Significant mRNA transfection was achieved by lipoplex delivery in quiescent (passage 0) human ...

متن کامل

Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes.

We investigated the effects of inhibitors of clathrin-mediated endocytosis (chlorpromazine and K(+) depletion) and of caveolae-mediated uptake (filipin and genistein) on internalization of FITC-poly-l-lysine-labeled DOTAP/DNA lipoplexes and PEI/DNA polyplexes by A549 pneumocytes and HeLa cells and on the transfection efficiencies of these complexes with the luciferase gene. Uptake of the comple...

متن کامل

Structurally well-defined copolymers of poly(ethylene glycol) and low molecular weight linear polyethylenimine as vectors for gene delivery.

Structurally well-defined ABA triblock copolymers with low molecular weight linear polyethylenimine (PEI) as A block and poly(ethylene glycol) (PEG) as B block have been prepared and used for gene delivery. PEI–PEG–PEI 2100–3400–2100 can effectively condense DNA, giving small-sized polyplexes (b100 nm) with reduced zeta-potentials (b10 mV). Initial experiments show that these polyplexes have a ...

متن کامل

In vitro Labeling of Neural Stem Cells with Poly-L-Lysine Coated Super Paramagnetic Nanoparticles for Green Fluorescent Protein Transfection

Background: The magnetic nanoparticle-based transfection method is a relatively new technique for delivery of functional genes to target tissues. We aimed to evaluate the transfection efficiency of rat neural stem cell (NSC) using poly-L-lysine hydrobromide (PLL)-coated super paramagnetic iron oxide nanoparticles (SPION). Methods: The SPION was prepared and coated with PLL as transfection agent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 121 48  شماره 

صفحات  -

تاریخ انتشار 2017